翻訳と辞書
Words near each other
・ Foli
・ Foli Adade
・ Folia
・ Folia (literary magazine)
・ Folia Primatologica
・ Foliaki
・ Foliar feeding
・ Foliar nematode
・ Foliar nutrient
・ Folias Cariocas
・ Folias Flute and Guitar Duo
・ Foliata
・ Foliated Jaguar
・ Foliation
・ Foliation (disambiguation)
Foliation (geology)
・ Foliatum
・ Foliatus
・ Foliba trio
・ Folic acid
・ Folie
・ Folie douce
・ Folie du pourquoi
・ Folie Saint James
・ Folie Tristan d'Oxford
・ Folie à deux
・ Folie à Deux (album)
・ Folie à deux (disambiguation)
・ Folie à Deux (The X-Files)
・ Folie à Deux (winery)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Foliation (geology) : ウィキペディア英語版
Foliation (geology)

Foliation in geology refers to repetitive layering in metamorphic rocks.〔Marshak, Stephen, ''Essentials of Geology,'' W. W. Norton 3rd Ed, 2009 ISBN 978-0393196566〕 Each layer may be as thin as a sheet of paper, or over a meter in thickness.〔 The word comes from the Latin ''folium'', meaning "leaf", and refers to the sheet-like planar structure.〔 It is caused by shearing forces (pressures pushing different sections of the rock in different directions), or differential pressure (higher pressure from one direction than in others). The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated metamorphic rocks are typically formed in the absence of significant differential pressure or sheer.〔 Foliation is common in rocks affected by the regional metamorphic compression typical of areas of mountain belt formation (orogenic belts).
More technically, foliation is any penetrative planar fabric present in metamorphic rocks. Rocks exhibiting foliation include the standard sequence formed by the prograde metamorphism of mudrocks; slate, phyllite, schist and gneiss. The ''slatey cleavage'' typical of slate is due to the preferred orientation of microscopic phyllosilicate crystals. In gneiss the foliation is more typically represented by compositional banding due to segregation of mineral phases. Foliated rock is also known as S-tectonite in sheared rock masses.
Examples include the bands in gneiss (gneissic banding), a preferred orientation of planar ''large'' mica flakes in schist (Schistocity), the preferred orientation of ''small'' mica flakes in phyllite (with its planes having a silky sheen, called ''phylitic luster'' - the Greek word, ''phyllon'', also means "leaf"), the extremely fine grained preferred orientation of clay flakes in slate (called "slaty cleavage"), and the layers of flattened, smeared, pancake-like clasts in metaconglomerate.〔
==Formation mechanisms==
Foliation is usually formed by the preferred orientation of minerals within a rock.
Usually this is a result of some physical force, and its effect upon the growth of minerals. The planar fabric of a foliation typically forms at right angles to the maximum principal strain direction. In sheared zones, however, planar fabric within a rock may not be directly perpendicular to the principal stress direction due to rotation, mass transport and shortening.
Foliation may be formed by realignment of micas and clays via physical rotation of the minerals within the rock. Often this foliation is associated with diagenetic metamorphism and low-grade burial metamorphism. Foliation may parallel original sedimentary bedding, but more often is oriented at some angle to it.
The growth of platy minerals, typically of the mica group, is usually a result of prograde metamorphic reactions during deformation. Often, retrograde metamorphism will not form a foliation because unroofing of a metamorphic belt is not accompanied by significant compressive stress. Thermal metamorphism in the aureole of a granite is also unlikely to result in growth of mica in a foliation, although growth of new minerals may overprint existing foliation(s).
Alignment of tabular minerals in metamorphic rocks, igneous rocks and intrusive rocks may form a foliation. Typical examples of metamorphic rocks include porphyroblastic schists where large, oblate minerals form an alignment either due to growth or rotation in the groundmass.
Igneous rocks can become foliated by alignment of cumulate crystals during convection in large magma chambers, especially ultramafic intrusions, and typically plagioclase laths. Granite may form foliation due to frictional drag on viscous magma by the wall rocks. Lavas may preserve a flow foliation, or even compressed eutaxitic texture, typically in highly viscous felsic agglomerate, welded tuff and pyroclastic surge deposits.
Metamorphic differentiation, typical of gneisses, is caused by chemical and compositional banding within the metamorphic rock mass. Usually this represents the protolith chemistry, which forms distinct mineral assemblages. However, compositional banding can be the result of nucleation processes which cause chemical and mineralogical differentiation into bands. This typically follows the same principle as mica growth, perpendicular to the principal stress.
Metamorphic differentiation can be present at angles to protolith compositional banding.
Crenulation cleavage is a particular type of foliation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Foliation (geology)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.